
Secure Source Backup

Script Assembler Manual

Users Manual

Version 2.0

September 3, 2014

This software is provided as-is.
There are no warranties, expressed or implied.

Copyright (C) 2014
All rights reserved

MarshallSoft Computing, Inc.
Post Office Box 4543

Huntsville AL 35815 USA

web : www.marshallsoft.com
Email: info@marshallsoft.com

MARSHALLSOFT is a registered (r) trademark of MarshallSoft Computing.

 1

http://www.marshallsoft.com/

TABLE OF CONTENTS

1 Introduction Page 4

 1.1 Script Program Structure Page 4
 1.2 Example Script Program Page 4

2 Script Program Structure Page 5

 2.1 Script Labels Page 5
 2.2 Condition Code Page 5
 2.3 Branching Page 5
 2.4 Subroutines Page 5
 2.5 Predefined Strings Page 5
 2.6 Instruction Classes Page 5
 2.7 Running the Script Compiler Page 6

 2

Appendix A: Script Instructions Page 7

A.0 Class 0 Opcodes Page 8
 A.0.1 CANCEL? Page 8
 A.0.2 NOP Page 8
 A.0.3 RESET Page 8
 A.0.4 RETURN Page 8
 A.0.5 STOP Page 8
A.1 Class 1 Opcodes Page 9
 A.1.1 BEEP Page 9
 A.1.2 COMPRESS Page 9
 A.1.3 DAY? Page 9
 A.1.4 DEBUG Page 9
 A.1.5 DISGUISE Page 9
 A.1.6 DOW? Page 9
 A.1.7 ENCRYPT Page 10
 A.1.8 HIDDEN Page 10
 A.1.9 MONTH? Page 10
 A.1.10 READONLY Page 10
 A.1.11 RUN Page 10
 A.1.12 SET_DDC Page 11
 A.1.13 SLEEP_MIN Page 11
 A.1.14 SLEEP_MIN Page 11
 A.1.15 SUB_DIRS Page 11
 A.1.16 TIMESTAMP Page 11
 A.1.17 VERBOSE Page 11
A.2 Class 2 Instructions (Opcodes) Page 12
 A.2.1 CALL Page 12
 A.2.2 GOTO Page 12
 A.2.3 IF_FALSE Page 12
 A.2.4 IF_TRUE Page 12
A.3 Class 3 Instructions (Opcodes) Page 13
 A.3.1 AUTH Page 13
 A.3.2 COPY Page 13
 A.3.3 DIR? Page 13
 A.3.4 DISPLAY Page 13
 A.3.5 DRIVE? Page 13
 A.3.6 FILE? Page 14
 A.3.7 IGNORE Page 14
 A.3.8 LOG_FILE Page 14
 A.3.9 MAP_FILE Page 14
 A.3.10 MOUNT Page 14
 A.3.11 PASS Page 14
 A.3.12 SKIP Page 15
 A.3.13 SOURCE Page 15
 A.3.14 TARGET Page 15
 A.3.15 USER Page 15
 A.3.16 VOL_NAME? Page 15
 A.3.17 VOL_SERIAL? Page 16
 A.3.18 WRITE Page 16

 3

1 Introduction

This manual discusses the Script Assembler (sa.exe), and is designed to be used
by those who have experience with programming.

The Script Assembler reads a script text file and creates the equivalent binary
script file which can subsequently be read and executed by SSB.

The advantage of using the script interpreter is that the script is programmable.
That is, it can verify the existence of files & directories, verify the volume name
and/or serial number of drives, check the month or day of the week, then branch
accordingly.

1.1 Script Program Structure

A SSB script program consists of lines of text, each line consisting of an optional
label, an instruction (opcode), and an operand. Lines beginning with '#' are
comments. For example, the code segment

 # set SOURCE directory
 SOURCE c:\MySourceFiles

specifies that the backup will begin in directory c:\MySourceFiles

All text commands as discussed in the SSB manual are also script instructions.
However, there are script instructions that can only be used in scripts, as for
example the GOTO script instruction.

1.2 Example Script Program

The following script program tests if the directory C:\MySourceFiles exists or not. If
it does, it displays the message "Source directory exists" and beeps once.
Otherwise, it displays the message "Source directory does not exist" and beeps
three times.

 # does file "C:\MySourceFiles" exist?
 DIR? C:\MySourceFiles
 IF_TRUE good_to_go
 DISPLAY "Source directory does not exist"
 BEEP 3
 STOP
 good_to_go:
 DISPLAY "Source directory exists"
 BEEP 1

1.3 Running the Script Compiler

The script compiler is run from the Windows command line. For example, to
assemble the script program Verify.a into Verify.b, type:

 sa Verify

Note that the extension ".a" is assumed.

 4

2 Script Program Structure

The script instruction file is a plain ASCII text file. Each line may be no more than
256 characters. Lines beginning with the '#' character are comments.

Script files always have extension ".a" and are assembled by the script assembler
sa.exe into a binary form (having extension ".b") that can be executed by ssb.exe.

Each line in a script program consists of an instruction (opcode) and an (optional)
operand:

 "opcode operand".

All instructions are described in Section 3 "Script Instructions".

2.1 Script Labels

Statement labels always end with a colon ':'. The operand of the instructions
IF_TRUE, IF_FALSE, and GOTO is always a label (but without a termination colon).

2.2 Condition Code

Instructions that end with the question mark '?' always set the "condition code
register". The condition code register maintains its value until changed by the
execution of another instruction ending with '?'.

2.3 Branching

The instruction IF_TRUE branches if and only if the condition code register is set to
"true". The instruction IF_FALSE branches if and only if the condition code register is
set to "false". The instruction GOTO always branches.

2.4 Subroutines

The instruction CALL jumps to its operand label, as shown in the example in the
previous section. The RETURN instruction jumps to the instruction immediately
following the last CALL instruction. Subroutines may be called to a maximum stack
depth of 64.

2.4 Predefined Strings

Predefined strings must start with '$', and can be defined as

 $STRING_NAME STRING_VALUE

For example, the following DISPLAY command would display "Good morning !"

 $HELLO "Good morning !"
 DISPLAY $HELLO

All strings must be defined before the code (program instructions).

 5

2.6 Instruction Classes

There are 4 classes of script instructions.

(1) Class 0: No operand.
(2) Class 1: Operand is a byte constant (0 to 255).
(3) Class 2: Operand is (16-bit) code address (program label).
(4) Class 3: Operand is a (16-bit) string address.

The script instructions are described in the following section "Script Instructions".

2.7 Running the Script Compiler

The script compiler is run from the Windows command line. To assemble a script
program file (which must have extension ".a"), type

 sa [flags] program-file

where flags (optional) are

 -u {generate un-assembly}
 -l {list statements}
 -ul {both of above}

Example 1: sa -ul backup
Example 2: sa restore

The first example above creates the file backup.b from backup.a, while the second
example creates file restore.b from restore.a

 6

Appendix A: Script Instructions

Command Instructions (* = script assembler only - cannot be used in a text
command file).

Script instructions are listed after the following table according to their class (0 to 3).

 AUTH : Specifies the path name of the restore authorization file.
 BEEP : Makes a beep sound.
* CALL : Calls a block of code (subroutine).
* CANCEL? : Prompts the user to cancel execution or not.
 COMPRESS : Enables compression.
 COPY : Specifies a file to copy.
* DAY? : Checks the day of the month (1 to 31).
 DEBUG : Sets the SSB debug level.
 DIR? : Tests for the existence of the specified directory.
 DISGUISE : Enables both file name & directory name disguising.
 DISPLAY : Displays a user specified message.
* DOW? : Checks the day of the week (0 to 6).
* DRIVE? : Tests for the existence of the specified drive.
 ENCRYPT : Enables encryption.
* FILE? : Tests for the existence of the specified file.
* GOTO : Transfers control to the specified program address (label).
 HIDDEN : Enables the processing of hidden files.
* IF_FALSE : Transfers control if the condition code is "true".
* IF_TRUE : Transfers control if the condition code is "false".
 IGNORE : Ignores (does not process) specified directory.
 LOG_FILE : Specifies the name of the SSB log file.
 MAP_FILE : Specifies the name of the SSB map file.
* MONTH? : Checks the month of the year.
 MOUNT : Request mounting a specified drive.
* NOP : Performs no function.
 PASS : Specifies the name of the SSB password phrase file.
 READONLY : Enables processing of "read only" files.
 RESET : Resets the script program (other than USER command).
* RETURN : Jumps to the instruction immediately following the last CALL.
 RUN : Starts a BACKUP, RESTORE, or LIST operation.
 SKIP : Specifies a file to skip (not copy).
 SLEEP_MIN : Sleeps the specified number of minutes.
 SLEEP_SEC : Sleeps specified number of seconds.
 SET_DDC : Sets the "directory disguise character".
 SOURCE : Specifies the name of the SSB source directory.
 STOP : Terminates execution.
 SUB_DIRS : Enables the processing of sub-directories.
 TARGET : Specifies the name of the SSB target directory.
 TIMESTAMP : Sets the max time between files to be considered the same.
 USER : Specifies the name of the SSB user ID file.
 VERBOSE : Enables verbose output in the log file.
* VOL_NAME? : Tests for the specified volume name.
* VOL_SERIAL? : Tests for the specified volume serial number.
 WRITE : Writes text to the SSB log file.

 7

A.0 Class 0 Instructions (Opcodes)

There is no operand for class 0 instructions.

A.0.1 CANCEL?

The CANCEL? instruction prompts the user to cancel execution or not. The condition
code is set to true if the user clicks the “Cancel” button, else the condition code is
set to false.

A.0.2 NOP

The NOP instruction performs no function.

A.0.3 RESET

The RESET instruction resets the script program as if the only instruction executed
thus far is the USER instruction. That is, all previous instruction are nullified, with
the exception of the USER instruction.

A.0.4 RETURN

The RETURN instruction jumps to the instruction immediately following the last
CALL instruction. Subroutines may call subroutine to a maximum stack depth of 64.

A.0.5 STOP

The STOP instruction terminates execution.

 8

A.2 Class 1 Instructions (Opcodes)

The operand is a one byte integer (0 to 255).

A.1.1 BEEP

The BEEP instruction beeps the number of times equal to the operand.

 Example: BEEP 3

A.1.2 COMPRESS

The COMPRESS instruction specifies if compression should be performed or not
during backup. COMPRESS is ignored unless encryption is enabled.

 Example: COMPRESS Y

A.1.3 DAY?

The DAY? instruction sets the condition code to "true" if the day of week matches
the operand. Use 1 to 31.

The purpose of the DOW? instruction is to facilitate making "day of the month"
backups.

 Example: DAY 7

A.1.4 DEBUG

The DEBUG instruction sets the debug level, which is 0 (off), 1 (low), or 2 (high).
The default debug level is 0.

 Example: DEBUG 1

A.1.5 DISGUISE

The DISGUISE instruction specifies if file names should be disguised during backup.
If the DDC (see SET_DDC) was also set, directory names will also be disguised.

 Example: DISGUISE Y

A.1.6 DOW?

The DOW? instruction sets the condition code to "true" if the day of week matches
the operand. Use 0 to 6 (Sunday = 0, Monday = 1, etc), or use "Sun", "Mon",
"Tue", "Wed", "Thu", "Fri", "Sat".

The purpose of the DOW? instruction is to facilitate making "day of the week"
backups. That is, a Monday backup, a Tuesday backup, etc.

 Example: DOW? Mon

 9

A.1.7 ENCRYPT

The ENCRYPT instruction specifies if encryption should be performed or not during
backup. The default is no encryption.

 Example: ENCRYPT Y

A.1.8 HIDDEN

The HIDDEN instruction specifies if hidden files should be processed or not. The
default is that hidden files are not processed.

 Example: HIDDEN Y

A.1.9 MONTH?

The MONTH? instruction sets the condition code to "true" if the month matches the
operand. Use 1 to 12 (January = 1, February = 2, etc), or use "Jan", "Feb",
"Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec".

The purpose of the MONTH? instruction is to facilitate making monthly backups.

 Example: MONTH? Feb

A.1.10 READONLY

The READONLY instruction specifies if read-only files should be processed or not.
The default is that read-only files are processed.

 Example: READONLY N

A.1.11 RUN

The RUN command takes one of three operands: BACKUP, RESTORE, LIST, and
VERIFY.

BACKUP -- Starts the process of backing up files.
RESTORE -- Starts the process of restoring encrypted files.
LIST -- Starts of process of listing disguised filenames.
VERIFY -- Verifies USER command.

After backing up or restoring is completed, the source and target directories (as
specified by the SOURCE and TARGET instructions) are cleared.

 Example 1: RUN BACKUP
 Example 2: RUN RESTORE
 Example 3: RUN LIST

 10

A.1.12 SET_DDC

The SET_DDC command sets the "directory disguise character (DDC) that is
appended to the end of each disguised directory component provided that the
"DISGUISE Y" is specified. The purpose of the DDC is to allow SSB to determine if a
directory name was disguised or not when restoring files. The default is that there is
no DDC (no disguising of directories).

The SET_DDC command takes the disguise character ('$', '#', or '@') or 'N' (to
disable directory disguising) as its argument.

 Example: SET_DDC $

A.1.13 SLEEP_MIN

The SLEEP_MIN command causes SSB to sleep the number of minutes (1 to 255)
specified.

 Example: SLEEP_MIN 1

A.1.14 SLEEP_SEC

The SLEEP_SEC command causes SSB to sleep the number of seconds (1 to 255)
specified.

 Example: SLEEP_SEC 5

A.1.15 SUB_DIRS

The SUB_DIRS instruction specifies if sub-directories should be processed or not
during backup or restore operations. The default is Y ("yes").

 Example: SUB_DIRS N

A.1.16 TIMESTAMP

The TIMESTAMP instruction sets the maximum time difference (0 to 120 seconds)
between 2 files to consider them unchanged. This is necessary because of the
different date stamp resolutions between the various file systems used by Windows.
The default value is 1 second.

To disable timestamp comparisons, use "TIMESTAMP N".

 Example: TIMESTAMP 0

A.1.17 VERBOSE

The VERBOSE command sets the debug level to N (off) or Y (on).

 Example: VERBOSE Y

 11

A.2 Class 2 Instructions (Opcodes)

The operand is a 16-bit code address.

A.2.1 CALL

The CALL instruction calls the block of code beginning with the operand label.
Control returns to the instruction following the CALL instruction when the RETURN
instruction is executed.

 Example: CALL Hello

A.2.2 GOTO

The GOTO instruction transfers control to the program address (label) specified by
the operand.

 Example: GOTO Fini

A.2.3 IF_FALSE

The IF_FALSE instruction transfers control to the program address (label) specified
by the operand if the condition-code is false.

 Example: IF_FALSE QuitNow

A.2.4 IF_TRUE

The IF_TRUE instruction transfers control to the program address (label) specified
by the operand if the condition-code is true.

 Example: IF_TRUE continue

 12

A.3 Class 3 Instructions (Opcodes)

The operand is a 16-bit string address.

A.3.1 AUTH

The AUTH instruction specifies the path name of the restore (file recovery)
authorization file. The authorization file is unique for each customer and is used only
when restoring previously backed up files. The purpose of the authorization file is to
prevent someone else, who has a copy of the pass.bin file, from decrypting files.

 Example: AUTH Auth.bin

A.3.2 COPY

The COPY instruction contains the file specification (using ? and * wildcards) of the
files to be processed during backup or restore. Up to 200 COPY commands may be
specified.

 Example: COPY *.c

A.3.3 DIR?

The DIR? instruction sets the condition code to "true" if the directory as specified by
the operand exists.

 Example: DIR? D:\SourceFiles\

A.3.4 DISPLAY

The display instruction pops up a Windows message box with a "OK" button on it.
The user must click the "OK" button before execution can continue.

 Example: DISPLAY "Hello, world"

A.3.5 DRIVE?

The DRIVE? instruction sets the condition code to "true" if the drive as specified by
the operand exists.

 Example: DRIVE? F:

 13

A.3.6 FILE?

The FILE? instruction sets the condition code to "true" if the file as specified by the
operand exists.

 Example: FILE? D:\SourceBackup\Code

A.3.7 IGNORE

The IGNORE instruction contains the directory (folder) name to be ignored (not
processed) during backup. Up to 200 IGNORE commands may be specified. For
example, "IGNORE OBJ" will ignore all directories named OBJ (and their sub-
directories). Wildcards are not supported.

 Example: IGNORE OBJ

A.3.8 LOG_FILE

The LOG_FILE instruction specifies the name of the log file, which contains the
details of the backup or restore run. The default log file name is SSB.LOG.

 Example: LOG_FILE Backup.log

A.3.9 MAP_FILE

The MAP_FILE instruction specifies the name of the "disguise map", the mapping
from the original filename (or folder names) to the disguised filename (or folder
name) created during backup.

 Example: MAP_FILE Backup.map

A.3.10 MOUNT

The MOUNT instruction verifies that the specified drive is ready to use. If it is not, a
prompt message is displayed, to which the user must reply.

 Example: MOUNT E:

A.3.11 PASS

The PASS instruction specifies the path name of the pass phrase file previously
created by MakePass.exe program. The PASS instruction is required before
encryption or decryption can be performed.

 Example: PASS Pass.bin

 14

A.3.12 SKIP

The SKIP instruction contains the file specification (using ? and * wildcards) of the
files to be skipped during backup or restore. Up to 200 SKIP commands may be
specified.

 Example 1: SKIP *.bak
 Example 2: SKIP *.*.bak

A.3.13 SOURCE

The SOURCE instruction specifies the full path location of the root directory
containing the files to be processed during backup.

 Example 1: SOURCE C:\SourceFiles\Code
 Example 2: SOURCE \\Remote\SourceFiles

A.3.14 TARGET

The TARGET instruction specifies the full path location of the root directory of the
backed-up files.

 Example 1: TARGET D:\SourceBackup\Code
 Example 2: TARGET \\Remote\SourceBackup

A.3.15 USER

The USER instruction specifies the path name of the user ID file "user.bin". The User
ID file contains the customer's customer ID (100 = evaluation version) and the
customer's registration string. The User ID file is read by both the backup software
ssb.exe and the pass phrase file creation software MakePass.exe

 Example: USER c:\ssb\User.bin

A.3.16 VOL_NAME?

The VOL_NAME? instruction sets the condition code to "true" if the volume name as
specified by the operand exists. The volume name can be found by using the
Windows VOL command (e.g.: VOL C:).

 Example: VOL_NAME? F:MIKE2

 15

A.3.17 VOL_SERIAL?

The VOL_SERIAL? instruction sets the condition code to "true" if the volume serial
number as specified by the operand exists. The operand must be a number. Decimal
numbers must end with '.' otherwise the number is assumed to be hexadecimal (as
displayed by the Windows VOL command).

The volume serial number can be found by using the Windows VOL command (e.g.:
VOL C:).

 Example 1: VOL_SERIAL? C:8035CD42
 Example 2: VOL_SERIAL? C:2151009602.

A.3.18 WRITE

The WRITE instruction writes text to the log file.

 Example: WRITE "March Backup"

 16

